欧美18videosex性欧美tube1080,男人的天堂国产亚洲,美女极度色诱视频国产,欧美bbbbbbsbbbbbb,欧美不卡一区二区三区

咨詢熱線 18216026475

您所在位置: 北京曼頓> 學(xué)校課程> 大數(shù)據(jù)建模與分析挖掘應(yīng)用實(shí)戰(zhàn)杭州10月28-31日

大數(shù)據(jù)建模與分析挖掘應(yīng)用實(shí)戰(zhàn)杭州10月28-31日

? 授課機(jī)構(gòu):北京曼頓

? 地址:北京市海淀區(qū)

? 發(fā)布時(shí)間:2020-09-25

咨詢熱線

18216026475

網(wǎng)報(bào)價(jià)格:7800

課程原價(jià):7800

課程詳情| 學(xué)校簡(jiǎn)介| 學(xué)校地址| 網(wǎng)上報(bào)名

大數(shù)據(jù)建模與分析挖掘應(yīng)用實(shí)戰(zhàn)(杭州,10月28-31日)

【舉辦單位】北京曼頓培訓(xùn)網(wǎng) www.mdpxb.com    

【培訓(xùn)日期】2020年10月28-31日

【培訓(xùn)地點(diǎn)】杭州

【培訓(xùn)對(duì)象】

1.大數(shù)據(jù)分析應(yīng)用開(kāi)發(fā)工程師

2.大數(shù)據(jù)分析項(xiàng)目的規(guī)劃咨詢管理人員

3.大數(shù)據(jù)分析項(xiàng)目的IT項(xiàng)目高管人員

4.大數(shù)據(jù)分析與挖掘處理算法應(yīng)用工程師

5.大數(shù)據(jù)分析集群運(yùn)維工程師

6.大數(shù)據(jù)分析項(xiàng)目的售前和售后技術(shù)支持服務(wù)人員


【課程背景】

大數(shù)據(jù)建模與分析挖掘技術(shù)已經(jīng)逐步地應(yīng)用到新興互聯(lián)網(wǎng)企業(yè)(如電子商務(wù)網(wǎng)站、搜索引擎、社交網(wǎng)站、互聯(lián)網(wǎng)廣告服務(wù)提供商等)、銀行金融證券企業(yè)、電信運(yùn)營(yíng)等行業(yè),給這些行業(yè)帶來(lái)了一定的數(shù)據(jù)價(jià)值增值作用。

■本次課程面向有一定的數(shù)據(jù)分析挖掘算法基礎(chǔ)的工程師,帶大家實(shí)踐大數(shù)據(jù)分析挖掘平臺(tái)的項(xiàng)目訓(xùn)練,系統(tǒng)地講解數(shù)據(jù)準(zhǔn)備、數(shù)據(jù)建模、挖掘模型建立、大數(shù)據(jù)分析與挖掘算法應(yīng)用在業(yè)務(wù)模型中,結(jié)合主流的Hadoop與Spark大數(shù)據(jù)分析平臺(tái)架構(gòu),實(shí)現(xiàn)項(xiàng)目訓(xùn)練。

■結(jié)合業(yè)界使用最廣泛的主流大數(shù)據(jù)平臺(tái)技術(shù),重點(diǎn)剖析基于大數(shù)據(jù)分析算法與BI技術(shù)應(yīng)用,包括分類算法、聚類算法、預(yù)測(cè)分析算法、推薦分析模型等在業(yè)務(wù)中的實(shí)踐應(yīng)用,并根據(jù)講師給定的數(shù)據(jù)集,實(shí)現(xiàn)兩個(gè)基本的日志數(shù)據(jù)分析挖掘系統(tǒng),以及電商(或內(nèi)容)推薦系統(tǒng)引擎。

■本課程基本的實(shí)踐環(huán)境是Linux集群,JDK1.8, Hadoop 2.7.*,Spark 2.1.*。

■學(xué)員需要準(zhǔn)備的電腦最好是i5及以上CPU,4GB及以上內(nèi)存,硬盤空間預(yù)留50GB(可用移動(dòng)硬盤),基本的大數(shù)據(jù)分析平臺(tái)所依賴的軟件包和依賴庫(kù)等,講師已經(jīng)提前部署在虛擬機(jī)鏡像(VMware鏡像),學(xué)員根據(jù)講師的操作任務(wù)進(jìn)行實(shí)踐。

■本課程采用技術(shù)原理與項(xiàng)目實(shí)戰(zhàn)相結(jié)合的方式進(jìn)行教學(xué),在講授原理的過(guò)程中,穿插實(shí)際的系統(tǒng)操作,本課程講師也精心準(zhǔn)備的實(shí)際的應(yīng)用案例供學(xué)員動(dòng)手訓(xùn)練。


【培訓(xùn)目標(biāo)】

1.本課程讓學(xué)員充分掌握大數(shù)據(jù)平臺(tái)技術(shù)架構(gòu)、大數(shù)據(jù)分析的基本理論、機(jī)器學(xué)習(xí)的常用算法、國(guó)內(nèi)外主流的大數(shù)據(jù)分析與BI商業(yè)智能分析解決方案、以及大數(shù)據(jù)分析在搜索引擎、廣告服務(wù)推薦、電商數(shù)據(jù)分析、金融客戶分析方面的應(yīng)用案例。

2.本課程強(qiáng)調(diào)主流的大數(shù)據(jù)分析挖掘算法技術(shù)的應(yīng)用和分析平臺(tái)的實(shí)施,讓學(xué)員掌握主流的基于大數(shù)據(jù)Hadoop和Spark、R的大數(shù)據(jù)分析平臺(tái)架構(gòu)和實(shí)際應(yīng)用,并用結(jié)合實(shí)際的生產(chǎn)系統(tǒng)案例進(jìn)行教學(xué),掌握基于Hadoop大數(shù)據(jù)平臺(tái)的數(shù)據(jù)挖掘和數(shù)據(jù)倉(cāng)庫(kù)分布式系統(tǒng)平臺(tái)應(yīng)用,以及商業(yè)和開(kāi)源的數(shù)據(jù)分析產(chǎn)品加上Hadoop平臺(tái)形成大數(shù)據(jù)分析平臺(tái)的應(yīng)用剖析。

3.讓學(xué)員掌握常見(jiàn)的機(jī)器學(xué)習(xí)算法,深入講解業(yè)界成熟的大數(shù)據(jù)分析挖掘與BI平臺(tái)的實(shí)踐應(yīng)用,并以客戶分析系統(tǒng)、日志分析和電商推薦系統(tǒng)為案例,串聯(lián)常用的數(shù)據(jù)挖掘技術(shù)進(jìn)行應(yīng)用教學(xué)。


【培訓(xùn)特色】

定制授課+ 實(shí)戰(zhàn)案例訓(xùn)練+ 互動(dòng)咨詢討論


【課程大綱】

兩個(gè)完整的項(xiàng)目任務(wù)和實(shí)踐案例(重點(diǎn))

1.日志分析建模與日志挖掘項(xiàng)目實(shí)踐

a)Hadoop,Spark,并結(jié)合ELK技術(shù)構(gòu)建日志分析系統(tǒng)和日志數(shù)據(jù)倉(cāng)庫(kù)

b)互聯(lián)網(wǎng)微博日志分析系統(tǒng)項(xiàng)目

2.推薦系統(tǒng)項(xiàng)目實(shí)踐

a)電影數(shù)據(jù)分析與個(gè)性化推薦關(guān)聯(lián)分析項(xiàng)目

b)電商購(gòu)物籃分析項(xiàng)目

Hadoop,Spark,可結(jié)合Oryx分布式集群在個(gè)性化推薦和精準(zhǔn)營(yíng)銷項(xiàng)目。 項(xiàng)目的階段性步驟貫穿到三天的培訓(xùn)過(guò)程中,第三天完成整個(gè)項(xiàng)目的原型

業(yè)界主流的數(shù)據(jù)倉(cāng)庫(kù)工具和大數(shù)據(jù)分析挖掘工具

1.業(yè)界主流的基于Hadoop和Spark的大數(shù)據(jù)分析挖掘項(xiàng)目解決方案

2.業(yè)界數(shù)據(jù)倉(cāng)庫(kù)與數(shù)據(jù)分析挖掘平臺(tái)軟件工具

3.Hadoop數(shù)據(jù)倉(cāng)庫(kù)工具Hive

4.Spark實(shí)時(shí)數(shù)據(jù)倉(cāng)庫(kù)工具SparkSQL

5.Hadoop數(shù)據(jù)分析挖掘工具M(jìn)ahout

6.Spark機(jī)器學(xué)習(xí)與數(shù)據(jù)分析挖掘工具M(jìn)Llib

7.大數(shù)據(jù)分析挖掘項(xiàng)目的實(shí)施步驟 配置數(shù)據(jù)倉(cāng)庫(kù)工具Hadoop Hive和SparkSQL


部署數(shù)據(jù)分析挖掘工具Hadoop Mahout和Spark MLlib

大數(shù)據(jù)分析挖掘項(xiàng)目的數(shù)據(jù)集成操作訓(xùn)練

1.日志數(shù)據(jù)解析和導(dǎo)入導(dǎo)出到數(shù)據(jù)倉(cāng)庫(kù)的操作訓(xùn)練

2.從原始搜索數(shù)據(jù)集中抽取、集成數(shù)據(jù),整理后形成規(guī)范的數(shù)據(jù)倉(cāng)庫(kù)

3.數(shù)據(jù)分析挖掘模塊從大型的集中式數(shù)據(jù)倉(cāng)庫(kù)中訪問(wèn)數(shù)據(jù),一個(gè)數(shù)據(jù)倉(cāng)庫(kù)面向一個(gè)主題,構(gòu)建兩個(gè)數(shù)據(jù)倉(cāng)庫(kù)

4.同一個(gè)數(shù)據(jù)倉(cāng)庫(kù)中的事實(shí)表數(shù)據(jù),可以給多個(gè)不同類型的分析挖掘任務(wù)調(diào)用

5.去除噪聲

項(xiàng)目數(shù)據(jù)集加載ETL到Hadoop Hive數(shù)據(jù)倉(cāng)庫(kù)并建立多維模型

基于Hadoop的大型數(shù)據(jù)倉(cāng)庫(kù)管理平臺(tái)—HIVE數(shù)據(jù)倉(cāng)庫(kù)集群的多維分析建模應(yīng)用實(shí)踐 6.基于Hadoop的大型分布式數(shù)據(jù)倉(cāng)庫(kù)在行業(yè)中的數(shù)據(jù)倉(cāng)庫(kù)應(yīng)用案例

7.Hive數(shù)據(jù)倉(cāng)庫(kù)集群的平臺(tái)體系結(jié)構(gòu)、核心技術(shù)剖析

8.Hive Server的工作原理、機(jī)制與應(yīng)用

9.Hive數(shù)據(jù)倉(cāng)庫(kù)集群的安裝部署與配置優(yōu)化

10.Hive應(yīng)用開(kāi)發(fā)技巧

11.Hive SQL剖析與應(yīng)用實(shí)踐

12.Hive數(shù)據(jù)倉(cāng)庫(kù)表與表分區(qū)、表操作、數(shù)據(jù)導(dǎo)入導(dǎo)出、客戶端操作技巧

13.Hive數(shù)據(jù)倉(cāng)庫(kù)報(bào)表設(shè)計(jì)

14.將原始的日志數(shù)據(jù)集,經(jīng)過(guò)整理后,加載至Hadoop + Hive數(shù)據(jù)倉(cāng)庫(kù)集群中,用于共享訪問(wèn) 利用HIVE構(gòu)建大型數(shù)據(jù)倉(cāng)庫(kù)項(xiàng)目的操作訓(xùn)練實(shí)踐

Spark大數(shù)據(jù)分析挖掘平臺(tái)實(shí)踐操作訓(xùn)練

15.Spark大數(shù)據(jù)分析挖掘平臺(tái)的部署配置

16.Spark數(shù)據(jù)分析庫(kù)MLlib的開(kāi)發(fā)部署

17.Spark數(shù)據(jù)分析挖掘示例操作,從Hive表中讀取數(shù)據(jù)并在分布式內(nèi)存中運(yùn)行

聚類分析建模與挖掘算法的實(shí)現(xiàn)原理和技術(shù)應(yīng)用

18.聚類分析建模與算法原理及其在Spark MLlib中的實(shí)現(xiàn)與應(yīng)用,包括:

a)Canopy聚類(canopy clustering)

b)K均值算法(K-means clustering)

c)模糊K均值(Fuzzy K-means clustering)

d)EM聚類,即期望最大化聚類(Expectation Maximization)

e)以上算法在Spark MLib中的實(shí)現(xiàn)原理和實(shí)際場(chǎng)景中的應(yīng)用案例。

19.Spark聚類分析算法程序示例 基于Spark MLlib的聚類分析算法,實(shí)現(xiàn)日志數(shù)據(jù)集中的用戶聚類

分類分析建模與挖掘算法的實(shí)現(xiàn)原理和技術(shù)應(yīng)用

20.分類分析建模與算法原理及其在Spark MLlib中的實(shí)現(xiàn)與應(yīng)用, 包括:

f)Spark決策樹(shù)算法實(shí)現(xiàn)

g)邏輯回歸算法(logistics regression)

h)貝葉斯算法(Bayesian與Cbeyes)

i)支持向量機(jī)(Support vector machine)

j)以上算法在Spark MLlib中的實(shí)現(xiàn)原理和實(shí)際場(chǎng)景中的應(yīng)用案例。

21.Spark客戶資料分析與給用戶貼標(biāo)簽的程序示例

22.Spark實(shí)現(xiàn)給商品貼標(biāo)簽的程序示例

23.Spark實(shí)現(xiàn)用戶行為的自動(dòng)標(biāo)簽和深度技術(shù)

基于Spark MLlib的分類分析算法模型與應(yīng)用操作

關(guān)聯(lián)分析建模與挖掘算法的實(shí)現(xiàn)原理和技術(shù)應(yīng)用

24.預(yù)測(cè)、推薦分析建模與算法原理及其在Spark MLlib中的實(shí)現(xiàn)與應(yīng)用,包括:

k)Spark頻繁模式挖掘算法(parallel FP Growth Algorithm)應(yīng)用

l)Spark關(guān)聯(lián)規(guī)則挖掘(Apriori)算法及其應(yīng)用

m)以上算法在Spark MLib中的實(shí)現(xiàn)原理和實(shí)際場(chǎng)景中的應(yīng)用案例。

25.Spark關(guān)聯(lián)分析程序示例

基于Spark MLlib的關(guān)聯(lián)分析操作

推薦分析挖掘模型與算法技術(shù)應(yīng)用

26.推薦算法原理及其在Spark MLlib中的實(shí)現(xiàn)與應(yīng)用,包括:

a)Spark協(xié)同過(guò)濾算法程序示例

b)Item-based協(xié)同過(guò)濾與推薦

c)User-based協(xié)同過(guò)濾與推薦

d)交叉銷售推薦模型及其實(shí)現(xiàn)

推薦分析實(shí)現(xiàn)步驟與操作(重點(diǎn))

回歸分析模型與預(yù)測(cè)算法

27.利用線性回歸(多元回歸)實(shí)現(xiàn)訪問(wèn)量預(yù)測(cè)

28.利用非線性回歸預(yù)測(cè)成交量和訪問(wèn)量的關(guān)系

29.基于R+Spark實(shí)現(xiàn)回歸分析模型及其應(yīng)用操作

30.Spark回歸程序?qū)崿F(xiàn)異常點(diǎn)檢測(cè)的程序示例

回歸分析預(yù)測(cè)操作例子

圖關(guān)系建模與分析挖掘及其鏈接分析和社交分析操作

31.利用Spark GraphX實(shí)現(xiàn)網(wǎng)頁(yè)鏈接分析,計(jì)算網(wǎng)頁(yè)重要性排名

32.實(shí)現(xiàn)信息傳播的社交關(guān)系傳遞分析,互聯(lián)網(wǎng)用戶的行為關(guān)系分析任務(wù)的操作訓(xùn)練 圖數(shù)據(jù)的分析挖掘操作,實(shí)現(xiàn)微博數(shù)據(jù)集的社交網(wǎng)絡(luò)建模與關(guān)系分析

神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)算法模型及其應(yīng)用實(shí)踐

33.神經(jīng)網(wǎng)絡(luò)算法Neural Network的實(shí)現(xiàn)方法和挖掘模型應(yīng)用

34.基于人工神經(jīng)網(wǎng)絡(luò)的深度學(xué)習(xí)的訓(xùn)練過(guò)程

a)傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的訓(xùn)練方法

b)Deep Learning的訓(xùn)練方法

35.深度學(xué)習(xí)的常用模型和方法

a)CNN(Convolutional Neural Network)卷積神經(jīng)網(wǎng)絡(luò)

b)RNN(Recurrent Neural Network)循環(huán)神經(jīng)網(wǎng)絡(luò)模型

c)Restricted Boltzmann Machine(RBM)限制波爾茲曼機(jī)

36.基于Spark的深度學(xué)習(xí)算法模型庫(kù)的應(yīng)用程序示例

基于Spark或TensorFlow神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)庫(kù)實(shí)現(xiàn)文本與圖片數(shù)據(jù)挖掘

時(shí)間 內(nèi)容提要 授課詳細(xì)內(nèi)容 實(shí)踐訓(xùn)練

第一天 業(yè)界主流的數(shù)據(jù)倉(cāng)庫(kù)工具和大數(shù)據(jù)分析挖掘工具 1.業(yè)界主流的基于Hadoop和Spark的大數(shù)據(jù)分析挖掘項(xiàng)目解決方案

2.業(yè)界數(shù)據(jù)倉(cāng)庫(kù)與數(shù)據(jù)分析挖掘平臺(tái)軟件工具

3.Hadoop數(shù)據(jù)倉(cāng)庫(kù)工具Hive

4.Spark實(shí)時(shí)數(shù)據(jù)倉(cāng)庫(kù)工具SparkSQL

5.Hadoop數(shù)據(jù)分析挖掘工具M(jìn)ahout

6.Spark機(jī)器學(xué)習(xí)與數(shù)據(jù)分析挖掘工具M(jìn)Llib

7.大數(shù)據(jù)分析挖掘項(xiàng)目的實(shí)施步驟 配置數(shù)據(jù)倉(cāng)庫(kù)工具Hadoop Hive和SparkSQL


部署數(shù)據(jù)分析挖掘工具Hadoop Mahout和Spark MLlib

 大數(shù)據(jù)分析挖掘項(xiàng)目的數(shù)據(jù)集成操作訓(xùn)練 1.日志數(shù)據(jù)解析和導(dǎo)入導(dǎo)出到數(shù)據(jù)倉(cāng)庫(kù)的操作訓(xùn)練

2.從原始搜索數(shù)據(jù)集中抽取、集成數(shù)據(jù),整理后形成規(guī)范的數(shù)據(jù)倉(cāng)庫(kù)

3.數(shù)據(jù)分析挖掘模塊從大型的集中式數(shù)據(jù)倉(cāng)庫(kù)中訪問(wèn)數(shù)據(jù),一個(gè)數(shù)據(jù)倉(cāng)庫(kù)面向一個(gè)主題,構(gòu)建兩個(gè)數(shù)據(jù)倉(cāng)庫(kù)

4.同一個(gè)數(shù)據(jù)倉(cāng)庫(kù)中的事實(shí)表數(shù)據(jù),可以給多個(gè)不同類型的分析挖掘任務(wù)調(diào)用

5.去除噪聲 項(xiàng)目數(shù)據(jù)集加載ETL到Hadoop Hive數(shù)據(jù)倉(cāng)庫(kù)并建立多維模型

 基于Hadoop的大型數(shù)據(jù)倉(cāng)庫(kù)管理平臺(tái)—HIVE數(shù)據(jù)倉(cāng)庫(kù)集群的多維分析建模應(yīng)用實(shí)踐 6.基于Hadoop的大型分布式數(shù)據(jù)倉(cāng)庫(kù)在行業(yè)中的數(shù)據(jù)倉(cāng)庫(kù)應(yīng)用案例

7.Hive數(shù)據(jù)倉(cāng)庫(kù)集群的平臺(tái)體系結(jié)構(gòu)、核心技術(shù)剖析

8.Hive Server的工作原理、機(jī)制與應(yīng)用

9.Hive數(shù)據(jù)倉(cāng)庫(kù)集群的安裝部署與配置優(yōu)化

10.Hive應(yīng)用開(kāi)發(fā)技巧

11.Hive SQL剖析與應(yīng)用實(shí)踐

12.Hive數(shù)據(jù)倉(cāng)庫(kù)表與表分區(qū)、表操作、數(shù)據(jù)導(dǎo)入導(dǎo)出、客戶端操作技巧

13.Hive數(shù)據(jù)倉(cāng)庫(kù)報(bào)表設(shè)計(jì)

14.將原始的日志數(shù)據(jù)集,經(jīng)過(guò)整理后,加載至Hadoop + Hive數(shù)據(jù)倉(cāng)庫(kù)集群中,用于共享訪問(wèn) 利用HIVE構(gòu)建大型數(shù)據(jù)倉(cāng)庫(kù)項(xiàng)目的操作訓(xùn)練實(shí)踐

 Spark大數(shù)據(jù)分析挖掘平臺(tái)實(shí)踐操作訓(xùn)練 15.Spark大數(shù)據(jù)分析挖掘平臺(tái)的部署配置

16.Spark數(shù)據(jù)分析庫(kù)MLlib的開(kāi)發(fā)部署

17.Spark數(shù)據(jù)分析挖掘示例操作,從Hive表中讀取數(shù)據(jù)并在分布式內(nèi)存中運(yùn)行

第二天 聚類分析建模與挖掘算法的實(shí)現(xiàn)原理和技術(shù)應(yīng)用 18.聚類分析建模與算法原理及其在Spark MLlib中的實(shí)現(xiàn)與應(yīng)用,包括:

a)Canopy聚類(canopy clustering)

b)K均值算法(K-means clustering)

c)模糊K均值(Fuzzy K-means clustering)

d)EM聚類,即期望最大化聚類(Expectation Maximization)

e)以上算法在Spark MLib中的實(shí)現(xiàn)原理和實(shí)際場(chǎng)景中的應(yīng)用案例。

19.Spark聚類分析算法程序示例 基于Spark MLlib的聚類分析算法,實(shí)現(xiàn)日志數(shù)據(jù)集中的用戶聚類

 分類分析建模與挖掘算法的實(shí)現(xiàn)原理和技術(shù)應(yīng)用  20.分類分析建模與算法原理及其在Spark MLlib中的實(shí)現(xiàn)與應(yīng)用, 包括:

f)Spark決策樹(shù)算法實(shí)現(xiàn)

g)邏輯回歸算法(logistics regression)

h)貝葉斯算法(Bayesian與Cbeyes)

i)支持向量機(jī)(Support vector machine)

j)以上算法在Spark MLlib中的實(shí)現(xiàn)原理和實(shí)際場(chǎng)景中的應(yīng)用案例。

21.Spark客戶資料分析與給用戶貼標(biāo)簽的程序示例

22.Spark實(shí)現(xiàn)給商品貼標(biāo)簽的程序示例

23.Spark實(shí)現(xiàn)用戶行為的自動(dòng)標(biāo)簽和深度技術(shù) 基于Spark MLlib的分類分析算法模型與應(yīng)用操作

 關(guān)聯(lián)分析建模與挖掘算法的實(shí)現(xiàn)原理和技術(shù)應(yīng)用  24.預(yù)測(cè)、推薦分析建模與算法原理及其在Spark MLlib中的實(shí)現(xiàn)與應(yīng)用,包括:

k)Spark頻繁模式挖掘算法(parallel FP Growth Algorithm)應(yīng)用

l)Spark關(guān)聯(lián)規(guī)則挖掘(Apriori)算法及其應(yīng)用

m)以上算法在Spark MLib中的實(shí)現(xiàn)原理和實(shí)際場(chǎng)景中的應(yīng)用案例。

25.Spark關(guān)聯(lián)分析程序示例 基于Spark MLlib的關(guān)聯(lián)分析操作

第三天 推薦分析挖掘模型與算法技術(shù)應(yīng)用 26.推薦算法原理及其在Spark MLlib中的實(shí)現(xiàn)與應(yīng)用,包括:

a)Spark協(xié)同過(guò)濾算法程序示例

b)Item-based協(xié)同過(guò)濾與推薦

c)User-based協(xié)同過(guò)濾與推薦

d)交叉銷售推薦模型及其實(shí)現(xiàn) 推薦分析實(shí)現(xiàn)步驟與操作(重點(diǎn))

 回歸分析模型與預(yù)測(cè)算法 27.利用線性回歸(多元回歸)實(shí)現(xiàn)訪問(wèn)量預(yù)測(cè)

28.利用非線性回歸預(yù)測(cè)成交量和訪問(wèn)量的關(guān)系

29.基于R+Spark實(shí)現(xiàn)回歸分析模型及其應(yīng)用操作

30.Spark回歸程序?qū)崿F(xiàn)異常點(diǎn)檢測(cè)的程序示例 回歸分析預(yù)測(cè)操作例子

 圖關(guān)系建模與分析挖掘及其鏈接分析和社交分析操作  31.利用Spark GraphX實(shí)現(xiàn)網(wǎng)頁(yè)鏈接分析,計(jì)算網(wǎng)頁(yè)重要性排名

32.實(shí)現(xiàn)信息傳播的社交關(guān)系傳遞分析,互聯(lián)網(wǎng)用戶的行為關(guān)系分析任務(wù)的操作訓(xùn)練 圖數(shù)據(jù)的分析挖掘操作,實(shí)現(xiàn)微博數(shù)據(jù)集的社交網(wǎng)絡(luò)建模與關(guān)系分析

 神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)算法模型及其應(yīng)用實(shí)踐 33.神經(jīng)網(wǎng)絡(luò)算法Neural Network的實(shí)現(xiàn)方法和挖掘模型應(yīng)用

34.基于人工神經(jīng)網(wǎng)絡(luò)的深度學(xué)習(xí)的訓(xùn)練過(guò)程

a)傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的訓(xùn)練方法

b)Deep Learning的訓(xùn)練方法

35.深度學(xué)習(xí)的常用模型和方法

a)CNN(Convolutional Neural Network)卷積神經(jīng)網(wǎng)絡(luò)

b)RNN(Recurrent Neural Network)循環(huán)神經(jīng)網(wǎng)絡(luò)模型

c)Restricted Boltzmann Machine(RBM)限制波爾茲曼機(jī)

36.基于Spark的深度學(xué)習(xí)算法模型庫(kù)的應(yīng)用程序示例 基于Spark或TensorFlow神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)庫(kù)實(shí)現(xiàn)文本與圖片數(shù)據(jù)挖掘

項(xiàng)目實(shí)踐

37.日志分析系統(tǒng)與日志挖掘項(xiàng)目實(shí)踐

a)Hadoop,Spark,ELK技術(shù)構(gòu)建日志數(shù)據(jù)倉(cāng)庫(kù)

b)互聯(lián)網(wǎng)微博日志分析系統(tǒng)項(xiàng)目

38.推薦系統(tǒng)項(xiàng)目實(shí)踐

a)電影數(shù)據(jù)分析與個(gè)性化推薦關(guān)聯(lián)分析項(xiàng)目

項(xiàng)目數(shù)據(jù)集和詳細(xì)的實(shí)驗(yàn)指導(dǎo)手冊(cè)由講師提供

培訓(xùn)總結(jié)

39.項(xiàng)目方案的課堂討論,討論實(shí)際業(yè)務(wù)中的分析需求,剖析各個(gè)環(huán)節(jié)的難點(diǎn)、痛點(diǎn)、瓶頸,啟發(fā)出解決之道;完成講師布置的項(xiàng)目案例,鞏固學(xué)過(guò)的大數(shù)據(jù)分析挖掘處理平臺(tái)技術(shù)知識(shí)以及應(yīng)用技能 

討論交流


【講師介紹】

  張老師,曼頓培訓(xùn)網(wǎng)(www.mdpxb.com)資深講師。阿里大數(shù)據(jù)高級(jí)專家,國(guó)內(nèi)資深的Spark、Hadoop技術(shù)專家、虛擬化專家,對(duì)HDFS、MapReduce、HBase、Hive、Mahout、Storm、spark和openTSDB等Hadoop生態(tài)系統(tǒng)中的技術(shù)進(jìn)行了多年的深入的研究,更主要的是這些技術(shù)在大量的實(shí)際項(xiàng)目中得到廣泛的應(yīng)用,因此在Hadoop開(kāi)發(fā)和運(yùn)維方面積累了豐富的項(xiàng)目實(shí)施經(jīng)驗(yàn)。近年主要典型的項(xiàng)目有:某電信集團(tuán)網(wǎng)絡(luò)優(yōu)化、中國(guó)移動(dòng)某省移動(dòng)公司請(qǐng)賬單系統(tǒng)和某省移動(dòng)詳單實(shí)時(shí)查詢系統(tǒng)、中國(guó)銀聯(lián)大數(shù)據(jù)數(shù)據(jù)票據(jù)詳單平臺(tái)、某大型銀行大數(shù)據(jù)記錄系統(tǒng)、某大型通信運(yùn)營(yíng)商全國(guó)用戶上網(wǎng)記錄、某省交通部門違章系統(tǒng)、某區(qū)域醫(yī)療大數(shù)據(jù)應(yīng)用項(xiàng)目、互聯(lián)網(wǎng)公共數(shù)據(jù)大云(DAAS)和構(gòu)建游戲云(Web Game Daas)平臺(tái)項(xiàng)目等。


【費(fèi)用及報(bào)名】

1、費(fèi)用:培訓(xùn)費(fèi)7800元(含培訓(xùn)費(fèi)、講義費(fèi));如需食宿,會(huì)務(wù)組可統(tǒng)一安排,費(fèi)用自理。

2、報(bào)名咨詢:  鮑老師

3、報(bào)名流程:電話登記-->填寫報(bào)名表-->發(fā)出培訓(xùn)確認(rèn)函

4、備注:如課程已過(guò)期,請(qǐng)?jiān)L問(wèn)我們的網(wǎng)站,查詢最新課程

5、詳細(xì)資料請(qǐng)?jiān)L問(wèn)北京曼頓培訓(xùn)網(wǎng):www.mdpxb.com (每月在全國(guó)開(kāi)設(shè)四百多門公開(kāi)課,歡迎報(bào)名學(xué)習(xí))


 


免責(zé)聲明:以上信息是由學(xué)考網(wǎng)平臺(tái)用戶自行發(fā)布,所有內(nèi)容均由發(fā)布者對(duì)信息的真實(shí)性負(fù)責(zé),學(xué)考網(wǎng)僅提供信息發(fā)布、展示,不對(duì)用戶信息內(nèi)容的真實(shí)性負(fù)責(zé),請(qǐng)用戶自行甄別,謹(jǐn)防受騙!!

北京曼頓簡(jiǎn)介

北京曼頓企業(yè)管理咨詢有限公司(以下簡(jiǎn)稱北京曼頓咨詢)成立于2005年,旗下網(wǎng)站為曼頓培訓(xùn)網(wǎng):www.mdpxb.com,是國(guó)內(nèi)較早一批專業(yè)的綜合性的培訓(xùn)單位之一。是總部位于美國(guó)的國(guó)際職業(yè)認(rèn)證標(biāo)準(zhǔn)聯(lián)合會(huì)在北京地區(qū)授權(quán)的培訓(xùn)考試及認(rèn)證單位[認(rèn)證號(hào):IOCL086132],同時(shí)也是香港培訓(xùn)認(rèn)證中心授權(quán)的培訓(xùn)認(rèn)證機(jī)構(gòu)[認(rèn)證號(hào):HKTCC(GZ)A10-11221]。本單位主要從事企業(yè)管理、項(xiàng)目管理、市場(chǎng)營(yíng)銷和人力資源管理方面的咨詢培訓(xùn)服務(wù)。歷經(jīng)多年的發(fā)展,已經(jīng)為近千家企業(yè)提供過(guò)各種形式的咨詢培訓(xùn)服務(wù),客戶涵蓋了電子電器、通訊、計(jì)算機(jī)IT行業(yè)、金融保險(xiǎn)、建材、化工、食品、機(jī)械、服裝/鞋業(yè)、禮品包裝、塑膠五金/模具、電線電纜等十幾個(gè)行業(yè)領(lǐng)域,在業(yè)界具有廣泛的權(quán)威和影響力。本單位師資由資深顧問(wèn)以及業(yè)界知名專家組成,顧問(wèn)師2/3為碩士研究(MBA)以上學(xué)歷。我們的專家團(tuán)隊(duì)基本都來(lái)自于財(cái)富500企業(yè),具有豐富的實(shí)戰(zhàn)經(jīng)驗(yàn)和系統(tǒng)全面的理論知識(shí)。

  • 學(xué)校名稱:北京曼頓

    固定電話:18216026475

    授課地址:北京市海淀區(qū) 預(yù)約參觀

網(wǎng)上報(bào)名搶優(yōu)惠

免費(fèi)試學(xué)

課程好不好,試了才知道!

同意《隱私政策》,并允許推薦給更多服務(wù)商為您提供服務(wù)!